学术视点

学术视点

日期:2025-04-17

|  来源:【字号:

题目:Large Language Model for Medical Images: A Survey of Taxonomy, Systematic Review, and Future Trends(医学影像大语言模型:分类、系统综述及未来趋势)

作者:P. Wang, W. Lu, C. Lu, R. Zhou, M. Li and L. Qin

来源:Big Data Mining and Analytics(大数据挖掘与分析), vol. 8, no. 2, pp. 496-517.

摘要:The advent of Large Language Models (LLMs) has sparked considerable interest in the medical image domain, as they can generalize to multiple tasks and offer outstanding performance. While LLMs achieve promising results, there is currently a lack of a comprehensive summary of medical images, making it challenging for researchers to understand the progress within this domain. To fill this gap, we make the first attempt to present a comprehensive survey for LLM on medical images. In addition, to better summarize the current progress comprehensively, we further introduce a novel x-stage tuning paradigm for summarization, including zero-stage tuning, one-stage tuning, and multi-stage tuning, offering a unified perspective on LLMs for medical images. Finally, we discuss challenges and future directions in this domain, aiming to spur more breakthroughs in the future. We hope this work can pave the way for the broad application of LLMs in medical images and provide a valuable resource for this domain.

编者译:大语言模型(LLMs)在医学影像领域的应用引发了广泛关注,其出色的多任务泛化能力和卓越的性能表现,为医学影像分析带来了无限可能。尽管LLMs在医学影像领域取得了显著进展,但目前仍缺乏系统性综述,制约了研究人员对该领域发展的全面把握。为此,本文首次对医学影像领域的LLMs应用进行了全面梳理,并引入x-阶段微调范式为医学影像LLMs应用总结提供统一框架,该范式涵盖零阶段、单阶段和多阶段微调多种方式。此外,本文还深入探讨了医学影像LLMs当前面临的挑战和未来发展方向,旨在推动领域突破。本研究不仅为LLMs在医学影像领域的广泛应用奠定了理论基础,更为相关研究提供了重要参考。

题目:国内外经典工业互联网体系架构发展研究

作者:王鹤子、张中献、杨学

来源:数据与计算发展前沿, 2025, 7(1): 119-134.

摘要:对全球工业互联网体系架构发展状况进行介绍与分析,为中国工业互联网体系架构发展方向提供参考。通过梳理国内外工业互联网体系架构及功能发展现状,对比分析美国、德国、日本及中国的工业互联网体系架构异同与发展优劣势。国内外工业互联网架构体系发展路线基于各国的制造业特点与技术基础的优势,在发展条件、发展目标、应用领域等方面各有差异,对我国工业互联网架构发展有一定的经验借鉴价值。对我国工业互联网技术融合发展、标准化建设、平台建设、中小型科技企业发展的相关建议,但具体落地方法尚需进一步的探讨。

题目:面向高性能计算环境的智能任务编排架构研究

作者:吴璨、肖海力、王小宁、卢莎莎、和荣

来源:数据与计算发展前沿, 2025, 7(1): 99-107.

摘要:一个大规模科学计算任务往往包括多个计算作业或一个作业组,且多个计算作业之间有执行顺序、有依赖关系,用户需要等待上一个作业完成再提交下一个作业。为了减少用户的等待时间,急需一种新的作业提交方式,允许用户同时提交多个有依赖关系的作业。提出了面向高性能计算环境的智能任务编排架构,可以自动解析作业之间的依赖关系,智能编排作业提交顺序,监控作业状态,当被依赖作业完成后提交下一个作业。从实际应用效果来看,智能任务编排服务可以有效简化用户操作。具备较好的应用效果。

题目:Learn to Schedule: Data Freshness-Oriented Intelligent Scheduling in Industrial IoT(学习调度:工业物联网中面向数据时效性的智能调度)

作者:J. Tang, F. Chen, J. Li and Z. Liu

来源:IEEE Transactions on Cognitive Communications and NetworkingIEEE认知通信与网络汇刊), vol. 11, no. 1, pp. 505-518.

摘要:In the context of the Industrial Internet of Things (IIoT), developing an accurate and timely scheduling policy is essential. Recently, the Age of Incorrect Information (AoII) is proposed for measuring the timeliness and accuracy of certain status information for monitoring/controlling purposes. In this work, we investigate a multi-sensor state updating system in which AoII is used for quantifying information freshness. We aim to find an optimal scheduling policy to minimize the system-wide cost under bandwidth constraint. We first model the source status updates monitored by sensors as Markov chains and the scheduling problem as a constrained Markov decision process (CMDP). It is challenging to solve the formulated CMDP problem by conventional methods, due to the heterogeneity of source status updates in IIoT and the bandwidth constraint. As such, a framework with the aid of deep reinforcement learning, i.e., Order-Preserving Quantization-Based Constrained Reinforcement Learning Algorithm with Historical Adjustment (OPQ-RL_HA) is developed. Furthermore, by integrating it with the Asynchronous Advantage Actor-Critic (A3C) and the Deep Deterministic Policy Gradient (DDPG), two different algorithms are proposed, i.e., OPQ-A3C_HA and OPQ-DDPG_HA. With extensive numerical validation, it is demonstrated that the proposed algorithm has a lower average system-wide cost compared to the benchmark algorithms.

编者译:在工业物联网(IIoT)背景下,开发准确及时的调度策略至关重要。针对监控/控制场景中状态信息的时效性需求,本创新性地采用错误信息时效性(AoII)作为量化指标,构建了一个多传感器状态更新系统旨在突破带宽限制,通过优化调度策略实现系统整体成本最小化。本研究首先将传感器监测的源状态更新建模为马尔可夫链,并将调度问题转化为约束马尔可夫决策过程(CMDP)。针对IIoT环境中源状态更新的异质性和带宽约束带来的技术难题,本文创新性地提出了基于深度强化学习的解决方案——具有历史调整功能的保序量化约束强化学习算法(OPQ-RL_HA)。在此基础上,通过融合异步优势演员-评论家(A3C)和深度确定性策略梯度(DDPG)算法,提出了两种优化算法:OPQ-A3C_HAOPQ-DDPG_HA。实验结果表明,与现有基准算法相比,新算法在降低平均系统整体成本方面表现出显著优势。该成果不仅为IIoT实时调度提供了创新解决方案,更为提升系统性能开辟了新途径,对推动IIoT技术发展具有重要意义。

题目:生态环境大数据背景下环境治理的路径优化研究

作者:李祎恒、吴嘉慧

来源:大数据,2025,11(02):167-176.

摘要:生态环境大数据作为新质生产力的重要组成部分,有助于推动环境治理高效化、科学化、精准化,实现环境治理向智能化转型。然而,将生态环境大数据应用于我国环境治理实践仍面临诸多现实问题:一是缺乏数据利用相关的法律规范,妨碍了数据利用,导致数据调用困难;二是生态环境大数据安全技术保障不足,引发数据失真和数据泄露等安全风险;三是算法监管制度不完善带来算法歧视,破坏我国环境治理生态。为解决上述现实问题,提出加强立法、技术保障和监督管理三方面的优化措施,通过加强数据基本法律制度建设,加强隐私保护、区块链等数字安全保障技术的研究以及健全算法监管方式等措施,纾解生态环境大数据应用过程中面临的问题,为实现环境治理现代化打下坚实基础。


附件: