AI即时预测材料结构与特性
| 来源:科技日报 张梦然【字号:大 中 小】
该算法被称为M3GNet,用于开发Matterverse.ai数据库,该数据库包含超过3100万种尚未合成的材料,其特性由机器学习算法预测。数据库还促进了具有卓越性能的新材料的发现,研究人员可使用其来寻找更安全、能量密度更高的可充电锂离子电池电极和电解质。
材料的性质由其原子排列决定。研究人员表示,与蛋白质类似,人们需要了解材料的结构才能预测其特性。换句话说,需要的是用于材料的“阿尔法折叠”。
鉴于此,为了构建材料的等价物,研究团队将图形神经网络与多体交互相结合,构建了一种深度学习架构,可在元素周期表的所有元素中通用、高精度地工作。
为了训练他们的模型,该团队使用了过去十年在材料项目中收集的巨大的材料能量、力和应力数据库。M3GNet原子间势(IAP)则可预测任何原子集合中的能量和力。最终Matterverse.ai是通过对无机晶体结构数据库中的5000多个结构原型进行组合元素替换而生成的,然后使用M3GNet IAP获得平衡晶体结构,用于属性预测。
在今天数据库的3100万种材料中,预计有超过100万种材料具有潜在的稳定性。团队不仅打算大大扩展材料的数量,还打算大幅扩展机器学习预测属性的数量。
新成果在材料动态模拟和性能预测方面也有广泛的应用。例如,人们通常对锂离子在电池电极或电解质中的扩散速度很感兴趣。扩散越快,电池充电或放电的速度就越快。研究证明,M3GNet IAP可用于准确预测材料的锂电导率。研究人员坚信M3GNet架构是一种变革性工具,可极大地扩展对新材料化学和结构的探索能力。